
PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

The Center for Exascale Simulation of
Plasma-coupled Combustion(XPACC)

Tools to Enable Access to Exascale

William D. Gropp

Center for Exascale Simulation of
Plasma-Coupled Combustion

Parallel Computing Institute
Computer Science
National Center for Supercomputing
Applications

1

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Our View of Exascale Challenges

I Plateau in clock rates requiring increased concurrency

I Simpler and more specialized processing elements
requiring support for heterogeneous computing

I Increasing likelihood of faults requiring multiple strategies
for resilience

I Scalability and performance irregularity requiring new
algorithms and adaptive methods

I High latency at all levels requiring latency hiding software
and algorithms

I Most apply to computing in general; for exascale, solutions to
these challenges must work well together.

I Time frame another challenge — must have usable tools
within life of project

2

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Consequences and Approaches

I Concurrency Algorithms and software to expose multiple
levels of parallelism. Systems built with a hierarchy of
compute elements — not a flat architecture with 109 cores,
but (say) 105 nodes each with 103 concurrent streams each
with 10-way functional units.

• Do not need a single programming approach — can compose
methods

I Heterogeneity Use GPUs as a stand-in for likely integrated
yet heterogeneous single chip architectures.

• Software tools to support multiple architectures, load balance.

I Fault detection and resilience Purely automatic methods
are too costly in time and energy.

I Complexity of Code Overall complexity impacts ability to
perform V&V; performance tuning; enhancements

• Use tools to address code complexity; maintain straightforward
“golden copy” and auto-generate and tune code as needed

3

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Overarching Approach

I Scalable numerical algorithms Exposing the amounts and
kind of parallelism is key to enabling CS techniques

I Overdecomposition Divide data structures into more than
one chunk per core to provide load balancing (redistribute),
performance (match memory hierarchy), latency hiding
(schedule), fault tolerance (unit of repair), heterogeneity
(schedule)

I Adaptive Computation Have the code at runtime adapt
runtime execution to respond to compile and runtime
information about progress, efficiency

I Source-to-source transformations Allow the computational
scientist to focus on expressing the algorithm and use tools to
provide customized versions of code for different situations
and platforms.
Always preserving the golden copy.

4

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Composition of Solutions

Rather than one do-everything solution (e.g., a new parallel
language), build interoperable tools that address one or more
issues.

I Enables exploitation of tools developed for commodity and
smaller-scale systems (can plug into framework)

I Mitigate risk by reducing single points of failure

I Increases potential for adoption by enabling incremental
adoption

I Addresses complexity by factoring methods and services
(complexity becomes primarily additive rather than
multiplicative)

5

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Overall Approach

I PlasComCM provides the overall framework; operator
(mathematics) based structure, union of logically regular
(including overlapping) meshes. Well-defined and
mathematically accurate method for information transfer
between modules.

I “Golden copy” of source code

I Use mathematically-oriented abstractions to connect with
source-to-source transformations (to map code onto different
hardware) and with adaptive runtime to efficiently manage
execution order and mask latency.

6

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Computer Science Contributions

I Load Balance and Overdecomposition

I Exploiting Specialized Processing Elements

I Locality and Performance

I Autotuning

I Fault Tolerance and Resilience

{

{

Existing CS

MPI, OpenMP

conventional I/O

Needed CS

load balancing

fault tolerance

I/O management

data localization

heterogeneity tools

power awareness

Petascale System

(homogeneous)

Exascale System

(heterogeneous)

Length Scales

Time Scales

Electrode

Plasma

Flow/Flame

Diffusion

Atomistic

Quantum

Diffusion

Atomistic

E & M

Convection

Diffusion

Reaction

Convection

Radiation

GLOBAL

LOCAL

VECTOR

SCALAR

CPU Suited

GPU Suited

Custom

 hardware

~ m - device

~ mm - turbulence

~ μm - flame thickness

~ μm - plasma sheaths

~ nm - chemical reactions

~ nm - electrode surface

~ s - electrode aging

~ ms - turbulence mixing

~ μs - plasma/reaction kinetics

~ ns - plasma breakdown

7

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Load Balance and Overdecomposition

I Many sources of dynamic load imbalance:

• Problem itself (geometry, chemistry, multiphysics)
• System runtime and OS steals resources (CPU, memory

bandwidth, interconnect for I/O)
• Faults, including recovery costs

I Load balance requires dynamic reassignment of work,
retaining low overhead

• Very fine grain (within an multithreaded MPI process; within a
loop). Build on current work with LLNL collaborators
Gamblin, de Supinski.

• Intermediate grain (e.g., between MPI processes; mesh
blocks). Build on extensive experience with Charm++ as
runtime, including scalable (20k nodes on BW, e.g.),
low-overhead load balancing.

• Intermediate grain also addresses fault tolerance (recover on
basis of block) and resource heterogeneity (schedule on
available resource).

8

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Load Balancing and Overdecomposition

I Research includes defining and building methods that
seamlessly handle very fine grain through very coarse.

Do#i=1:Ns*1#
#rhs(:,i)=0#
#rhs(:,i)+=ApplyOperator(D_x,*cv(:,1)*(u(:,1)+V(:,i,1))*Y(:,i)),ASYNC)#
#rhs(:,i)+=ApplyOperator(D_y,*cv(:,1)*(u(:,2)+V(:,i,2))*Y(:,i)),ASYNC)#
#rhs(:,i)+=ApplyOperator(S_i,[rho#T#Y],ASYNC)#
#WaitOperators()#

enddo#

OverdecomposiLon#
Simple#cache#blocking#to#
HTA,#advanced#data#
layout#(DL)#

AdapLve,#
locality*
sensiLve#
runLme#

Core# Core# Core# Core#

9

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Common Approach for Load Balancing

I Internode load balancing important for multi-physics,
refinement, . . .

Do#i=1:Ns*1#
#rhs(:,i)=0#
#rhs(:,i)+=ApplyOperator(D_x,*cv(:,1)*(u(:,1)+V(:,i,1))*Y(:,i)),ASYNC)#
#rhs(:,i)+=ApplyOperator(D_y,*cv(:,1)*(u(:,2)+V(:,i,2))*Y(:,i)),ASYNC)#
#rhs(:,i)+=ApplyOperator(S_i,[rho#T#Y],ASYNC)#
#WaitOperators()#

enddo# OverdecomposiLon#
Simple#cache#blocking#to#
HTA,#advanced#data#
layout#(DL)#

AdapLve,#
locality*
sensiLve#
runLme#

Core# Core# Core# Core# Core# Core# Core# Core#

Internode#load#
balancing#

10

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Exploiting Specialized Processing Elements

I For power, density, etc., processors likely to specialize (GPUs
are a current example; we expect integrated, specialized cores
rather than the current attached-processor)

I Address by creating tools that optimize code for specific needs

I Example: Thread coarsening. Allows programmer/algorithm
developer to think in terms of maximum parallelism (good for
Exascale!) and let tool perform hardware-appropriate
aggregation.

I Example: Data layout. Even for dense matrices, the “natural”
layout is not the most efficient for computation. (Near)
optimal layout depends on details of hardware, so best if a
tool can manage all code and data structure transformations.

I Scheduling/load balancing handled through overdecomposition

11

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Exploiting Specialized Processing Elements

Do#i=1:Ns*1#
#rhs(:,i)=0#
#rhs(:,i)+=ApplyOperator(D_x,*cv(:,1)*(u(:,1)+V(:,i,1))*Y(:,i)),ASYNC)#
#rhs(:,i)+=ApplyOperator(D_y,*cv(:,1)*(u(:,2)+V(:,i,2))*Y(:,i)),ASYNC)#
#rhs(:,i)+=ApplyOperator(S_i,[rho#T#Y],ASYNC)#
#WaitOperators()#

enddo#

OverdecomposiLon#
Simple#cache#blocking#to#
HTA,#advanced#data#
layout#(DL),#Thread#
coarsening#(TC)#

AdapLve,#
locality*
sensiLve#
runLme#

Core# Core# Core# GPU#

Support#specialized#processing#
elements#

12

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Autotuning for Performance

I Generating efficient code is necessary but error prone, labor
intensive

I Building an optimizing compiler is not realistic (best results
exploit application’s data structure properties)

I Alternative is to open up the compilation process and use the
(probably vendor) compiler for code generation and fine grain
optimization at the instruction level and use other tools to
apply larger grain optimizations

I Problem with this approach is (a) the compilers’ performance
model is unavailable and (b) performance model too
inaccurate for picking optimization strategies

I One approach is autotuning, where a family of possibilities is
defined and experiments run to pick solution

I We will build on experience with Spiral

13

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Autotuning for Performance

I Our approach: higher-level abstractions, easily integrated into
code, preserving a “golden copy” from which computational
scientist can work

Code Development Cycle

Transformer

Annotation
Implementation

Modify Annotation
implementation

Performance
Tests

Test
again

Reprocess
annotated code

Original
annotated

source

Agent iterates choices
based on tests

14

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Programming Approach

I At all levels: abstractions hide implementation details, provide
flexibility

I MPI-3 for internode

• Concurrency O(105)–O(106)
• Includes MPI-3 one-sided and shared memory; provides

advantages of PGAS languages but without risk of compiler
development; based on MPI communicators, gives better
support for multi-physics

• Alternatives include other systems supporting one-sided
operations (lighter weight), but methods unlikely to require
few word put/get/accumulate

• Productivity issues mostly associated with distributed data
structure support, performance optimization; handled with
other tools

• Internode scalability requires adaptive load balance
• Leverage extensive Charm++ experience

15

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Programming Approach

I Adaptive runtime for intranode
I Tools for performance optimization at node, core level

(source-to-source transformations)

• Shares with so-called domain specific languages (really
abstract data-structure specific languages)

I Established language compilers for core(s)

• C/C++/Fortran 90
• OpenACC, OpenMP, CUDA
• Aided by autotuners, code generators

16

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Computer Science Impact on Our Simulation

I PlasComCM can scale efficiently across all current
architectures and is expected to scale on anticipated
architectures

I PlasComCM can effectively harness the high- and
evolving-complexity of current and anticipated computers

I PlasComCM can both efficiently utilize full machines for
maximum-scale-of-the-day simulations and still be useful for
extensive small-simulation sampling for UQ or parametric
investigation

I Within a reasonable set of guidelines, PlasComCM’s
development (algorithms and physical models) proceed
unhindered by evolving hardware norms and constraints

I The tools that enable PlasComCM in this way are portable to
other applications

17

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Our CS Contributions

I Integrated use of overdecomposition for load balance,
resilience, performance, latency tolerance and heterogeneity
and tools to implement

I Comprehensive attention to locality for performance and tools
to implement

I Adaptive computing to address scaling, load-balance,
performance irregularity, resilience

I A cooperative, component-oriented approach to permit
incremental adoption to a significantly more advanced code

I Success: PlasComCM unconstrained by the challenges of
exascale

18

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Advancing Exascale Computation

I Exascale requires extreme care in everything. A large part of
the contribution is an approach that permits and encourages
combining the best possible tools and techniques

I Specific issues: load balance and noise (over-decomposition);
locality (Hierarchically Tiled Arrays, vector/thread/task
decompositions tested in GPU context)

I Resilience (Checkpoint-restart; support for algorithmic
approaches)

I Demonstrate practicality of composition of programming
systems

19

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

The Team

20

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

The Team

Principal Investigator/CS Lead
W. Gropp (CS/PCI)

Application Lead
J. Freund (MechSE/AE)

Computer Science
W. Hwu (ECE/PCI)

S. Kale (CS)
D. Padua (CS)

[A. Kloeckner (CS)]

Application Simulations
H. Johnson (MechSE)
C. Pantano (MechSE)

[M. Panesi (AE)]

Experimental Lead
G. Elliott (AE)

Application Experiments
I. Adamovich (MAE at OSU)

N. Glumac (MechSE)
W. Lempert (Chem, MAE at OSU)

External Advisory Board
Campbell Carter (AFRL)

Andrew Chien (UChicago)
Jack Dongarra (UTenn/ORNL)

Max Gunzburger (FSU)
Bob Moser (UT Austin)

Elaine Oran (ONRL)

Chief Software Architect
D. Bodony (AE)

Hardware-Algorithms Integration
Lead: L. Olson (CS)

Executive Committee

21

PCIParallel Computing
Institute

CSE Computational
Science & Engineering XPACC

Center for Exascale Simulation

of Plasma-Coupled Combustion

Initial PhD Student Projects

I Planning a highly integrated, collaborative effort

22

